Managing Complexity of Radio Interferometry

Observatories Using Graph Technologies

. . Anatoly Zavyalov, working with Adam Hincks
University of Toronto August 11, 2021

The Need What 1s HIRAX?

Modern radio The Hydrogen Intensity and
interferometry Real-time Analysis eXperiment (HIRAX)
observatories consist is an upcoming observatory consisting
of thousands of of a 32x32 array of radio

interferometric telescopes, and will
be constructed in the Karoo region
of South Africa. Inspired by CHIME,
it will be used to study the
distribution and evolution of dark

components, so it is
necessary to have a
system to track, add,
update and perform

queries on all of the matter and dark energy throughout the
components that . universe by observing the 21-cm
make up the experiment. wavelength line of hydrogen. : ‘

How the final HIRAX array may look like in Karoo. Credit: HIRAX Collaboration
Common Queries Planning
Some common queries that should be We knew that users of the system would interact with it either through a
answered using the system are: Python API by creating scripts, or through a web interface, which would

use the Python API to extract information from a database.

- What input does this antenna

connect to? The Python API would provide access to the database, and allow the user

to access and update the properties of all the components, view

- What were the position and tilt connections between components, and more. Most "bulk" operations would
of this antenna three days ago? be done through the Python API, such as adding or changing many components
- What components did the signal pass at once.

through on its way to the input?
- Were these components connected
to each other at this time?

The web interface would provide a more readable format for the information,
as well as a graphical interface to interact with the data.

Graphs Reconstructing the Graph
The observatory site could be well A major requirement of the HIRAX
represented by a graph - a structure layout database is to be able to
consisting of vertices that can be determine the graph’s structure at
connected to other vertices by edges. any point in time and be able to
The components would be represented reconstruct how the graph looked like
by vertices, and the connections between given a timestamp. For example, we
the components would be represented as wish to know, at a specific date and
edges between these vertices. From the time, whether two vertices of the
start, we were interested in graph graph were connected and what the
databases that could natively store properties of the elements

A simple graph of 6 vertices labelled with numbers. the data in a graph structure. represented by those vertices were.

Credit: Wikipedia

Graphs in HIRAX

The HIRAX observatory will contain .) Analog
identical signal chains for Actlive RFoF Optical RFoF Yo
each of the 1024 antennas, Balun oS Fiber receiver e
which can be represented with Dual

a graph structure by considering Polarization

each component as a vertex, Feed

with connections between RFOF

components represented by edges. transmitter receiver Digital

Converter,

This is shown on the right:

Credit: Anatoly Zavyalov

Graph Databases Reconstructing the Graph pt.2

If the observatory site can be best modeled with graphs, To determine whether two vertices (representing

it makes sense to store the data as a graph as well. components) were connected or disconnected at some time,
Unlike conventional relational databases that store data we can store the connections as separate edges between
in tables, graph databases store data in a graph structure. the vertices:

We settled on JanusGraph, a free and open-source graph
database actively supported by its developers with a
large, active community. JanusGraph also allows to start = 0, end = 1
connect to it using a Python interface called
Gremlin-Python, making it perfect for our needs.

Tools for Web and Connectivity

Since we wanted the web interface to directly connect to
the Python API (hence reducing the amount of code we
would have to rewrite), we used the Flask web framework, start = 4. end = o
which would query the Python API and allow us to fetch it
from the web interface. For the web interface,

we use the React library, which contains queries to

the Flask framework that interacts with the Python API.

Credit: Anatoly Zavyalov

In the above image, two vertices A and B are connected
at time O, disconnected at time 1, connected at time 2,
disconnected at time 3, and connected from time 4 to

JanusGraph Python Flask JavaScript React beyond :
With this approach, to determine whether two components
— — were connected at some time t, we simply iterate over
Js all edges between the components and see if there exists
an edge such that t falls in between its start and end
Database Python Interface Web Interface times.
The Process Python API
1. Get acquainted with JanusGraph, determine So far, we have developed a
whether all necessary functionality is >>> ¢ = Component.from_db("ANTOGO1") Python API that allows for
achlﬁvable with it. . e ?.component_type.name simple retrieval and creation
2. Benchmark and optimize JanqsGrap : ANT of components and their
How fast are common operations, and can >>> c.component_type.comments properties
we optimize the queries to make them 'This is the antenna type' '
even faster? >>> c.revision.name : -
3. Create a Python API to interact with the A Z:tiaiigt;Ogo;;osZiTp}$030de
JanusGraph database, include the minimum f s
e uiredpfunctionalit >>>'c.rev151on:comment§ ' the database and allows you
9 Y- 'This 1s the first revision of the to view its attributes,

4. Create a web interface to use the Python

API to graphically interact with the data. I such as its type and revision.

Limitations and Uncertainties

In the JanusGraph experimentation stages, we

Web Interface

An early version of the
web interface shows a

HIRAX Layout DB

list of Components Viewing 101-150 components out of 1000 were 100king for ways to eaSily extract

where one views ali & View 50 v componentsatatime - subgraphs from the database. JanusGraph had a
components in the built-in subgraph extraction method, but it
database. e was not supported in the Python implementation,

5g§;r§n253§:ionality oo as it was built to be "lightweight".

clickable components We also encountered a delay when first querying
where one views more A101 the database lasting upwards of 10 seconds,
details, visualizations which has yet to be fully addressed.

of subgraphs, a o Lastly, due to the quite large software
graphical interface for Y , , q 9 ! ,
adding components, A103 stack, working with the system will require
changing properties, some learning for future contributors

and more. to the system.

A-104

Credit: Anatoly Zavyalov

Did we meet the need? References

So far, we created a working Python API as well as a barebones web "Flask", https://flask.palletsprojects.com/en/2.8.x/
interface. All the building blocks are in place, but there still remains

more work to be done in order to achieve the full functionality of the Hincks, A. D., and Shaw, J. R., "Managing Hardware
system. Configurations and Data Products for the Canadian

Hydrogen Intensity Mapping Experiment, " arXiv
1410.8418 (Sept. 2015)

Next Steps

For the Python API, the next steps to improve and better the functionality "JanusGraph”, https://janusgraph.org/

of the API are to implement more functions that use the existing

foundations that we have built. For example, to find a shortest path Newburgh, L. et al., "HIRAX: a probe of dark energy
between two components in the graph, a single database query is to be and radio transients," arXiv 1607.820859 (Aug. 2016)
integrated into the existing API. To increase the functionality of the

web interface, all that is needed to use the existing Python API to "React”, https://reactjs.org/

access the necessary information and format it.

