Modelling the Core Collapse Supernova Explosion Mechanism in One Dimension

Emma Jarvis Supervisor: Almog Yalinewich

Summary

- Core collapse supernovae occur at the end of a massive star's life.
- → 1D simulations of core collapse supernovae do not explode without turbulence.
- → This project uses **diffusion** to model **turbulence** in 1D.
- We found that increasing the diffusion strength makes the shock explode more easily.

Core Collapse Supernovae

Stellar Evolution

Explosion Mechanism

The Model

Hydrodynamics

→ Hydrodynamic equations solved using self similarity.

Diffusion was used to model the effect of turbulence in one dimension.

Diffusion Equation: $\frac{\partial y}{\partial t} = \nabla (D\nabla y)$

- \rightarrow The diffusion coefficient, D:
 - **length** of the eddies × thermal **speed**

Point Gravity

Newtonian point gravity of the proto neutron star

Shock Trajectories

Increasing diffusion makes the shock travel **faster**

Trajectory prefectors, A

Faster shock → easier to explode!

Supernova 1987A Remnant