Digital Micromirror Device Multi-Object Spectrograph (DMD-MOS) Calibration

By Rosalind Liang; Supervised by Shaojie Chen and Suresh Sivanandam

Introduction

Single slit spectrographs can only generate the spectra of one object at a time. By acting as a programmable slit mask, DMDs allows a spectrograph to generate spectra of many different objects in the same field of view, such as M56 pictured here -

Problem

How can we predict the location each object's spectra will be on the detector, and select objects so that their spectra don't overlap?

Solution Outline

- 1. Calculate output parameters
- 2. Relate mirror location with spectra location
- 3. Generate spectra with simulated data
- 4. Perform wavelength calibration

Input Parameters

Telescope

diameter D_T resolving power R F-ratio F/#_T field of view FOVx, FOVy

Wavelength

DMD

of mirrors NMX, NMY mirror pitch p_{M} plate scale S_M

minimum central maximum

Groove density G

Diffraction grating

Detector # of pixels N_{DX}, N_{DY}

pixel pitch plate scale Sp

Calculated Output Parameters

pixels per mirror Np1 (SD, SM) spectrograph magnification Ms(pp,pM,Np1) spectral resolution Number of bandpasses focal lengths

 $\triangle \lambda (R, \lambda_c)$ $BP(\lambda_{min}, \lambda_{max}, \triangle \lambda)$ $f_T(F/\#,D)$

 $f_{\text{cam}}\left({{{\lambda }_{\text{min}}},{{{\lambda }_{\text{max}}},}G,BP,p_{\text{D}}} \right)$ $f_{col}(f_{cam}, M_s)$

grating to camera distance $d(p_c, p_u, N_{p1}, N_{MX}, f_{col}, \lambda_c)$

Solving for outputs illustrates how each parameter is related to the others

slit n mirrors from DMD center

n = -2-1 0 center slit

2x2 mirror per slit by Nyquit Sampling Theorem

Translating DMD slit choice to location of spectra on detector

From Bragg condition

entrance angle n

From trigonometry

exit angle n

diffraction grating

 $\rightarrow \alpha_n = \alpha_0 + \arctan(\frac{np_M}{f}) \longrightarrow \beta_n(\lambda) = \arcsin(G\lambda - \sin(\alpha_n))$

From grating equation

detector

distance from detector center

 $X_n(\lambda) = d \tan(\beta_0(\lambda_c) - \beta_n(\lambda))$

 $P_x(n,\lambda) = \frac{N_{DX}}{2} + \frac{X_n(\lambda)}{n_D}$

Spectral pixel number

Simulating Predicted Spectra

Exposure of M56 taken via iTelescope Objects identified using algorithm taking threshold brightness and size into account

Overlap prevented by filtering for objects at least 2 slit widths apart in the spatial (y) dimension

Spectra generated using equation derived in part 2

The pixel number corresponding to each wavelength and slit location can now be predicted

Wavelength Calibration Polynomial fit residuals

Wavelength (nm)

Using a light source with known spectral features, a polynomial fit for spectra at each location on the detector can be performed

This figure shows that higher order fits have lower residuals

(Without lab access to DMD-MOS, a single slit spectrograph was calibrated using an Hg lamp as practice)

Next Steps

Generate true simulated data to pass through simulated optics on Zemax, and perform calibration on real DMD-MOS (limited by restricted access to lab)